Constructors and Destructors -0 151

Program 6.2 shows the use of overloaded constructors.

#include <iostream>

using namespace std;

class complex

{
float x, y;

public:

complex(}{ } // constructor no arg
complex(float a) {x = y = a;} // constructor-one arg
complex(fioat real, float imag) // constructor-two args
{x = real; y = imag;}

friend complex sum(complex, complex);
friend void show(complex);
bs

complex sum{complex cl, complex c2) // friend

{
complex c¢3;
c3.x = cl.x + c2.x;
c3.y = cl.y + c2.y;
return{(c3);

}

void show(complex c) // friend

{
cout << c.x << " + j" << c.y << "\n";

}

int main()

{
complex A(2.7, 3.5); // define & initialize
complex B(1.6); // define & initialize
complex C; // define
C = sum{A, B); // sum() is a friend
cout << "A = "; show(A); // show() is also friend
cout << "B = "; show(B);
cout << “C = "; show(C);

// Another way to give initial values (second method)

complex P,Q,R; // define P, @ and R

(Contd

1520— Object-Oriented Programming with C++

P = complex(2.5,3.9); // initialize P
Q = complex(1.6,2.5); // initialize Q
R = sum(P,Q); '

cout << "\n";
cout << "P = "; show(P);

cout << “Q = "; show(Q);
cout << "R = "; show(R);
return 0;

PROGRAM 6.2

The output of Program 6.2 would be:

A=2.7 +33.5
B=1.6+jl.6
C=4.3+j5.1
P=2.5+33.9
Q=-1.6 + j2.5
R=14.1+ j6.4

reote

There are three constructors in the class complex. The first constructor, which takes no
arguments, is used to create objects which are not initialized; the second, which takes
one argument, is used to create objects and initialize them; and the third, which takes
two arguments, is also used to create objects and initialize them to specific values. Note
that the second method of initializing values looks better.

Let us look at the first constructor again.
complex(){ }

It contains the empty body and does not do anything. We just stated that this is used to
create objects without any initial values. Remember, we have defined objects in the earlier
examples without using such a constructor. Why do we need this constructor now?. As
pointed out earlier, C++ compiler has an implicit constructor which creates objects, even
though it was not defined in the class.

This works fine as long as we do not use any other constructors in the class. However,
once we define a constructor, we must also define the "do-nothing" implicit constructor.
This constructor will not do anything and is defined just to satisfy the compiler.

Constructors and Destructors -0 153

|6.5 Constructors with Default Arguments

It is possible to define constructors with default arguments. For example, the constructor
complex() can be declared as follows:

complex(float real, float imag=0);
The default value of the argument imag is zero. Then, the statement
complex C(5.0);

assigns the value 5.0 to the real variable and 0.0 to imag (by default). However, the
statement

complex C(2.0,3.0);

assigns 2.0 to real and 3.0 to imag. The actual parameter, when specified, overrides the
default value. As pointed out earlier, the missing arguments must be the trailing ones.

It is important to distinguish between the default constructor A::A() and the default
argument constructor A:zA(int = 0). The default argument constructor can be called with
either one argument or no arguments. When called with no arguments, it becomes a default

constructor. When both these forms are used in a class, it causes ambiguity for a statement
such as

A a;

The ambiguity is whether to 'call' A::A() or A::A(int = 0).

|6.6 Dynamic Initialization of Objects

Class objects can be initialized dynamically too. That is to say, the initial value of an object
may be provided during run time. One advantage of dynamic initialization is that we can
provide various initialization formats, using overloaded constructors. This provides the
flexibility of using different format of data at run time depending upon the situation.

Consider the long term deposit schemes working in the commercial banks. The banks
provide different interest rates for different schemes as well as for different periods of
investment. Program 6.3 illustrates how to use the class variables for holding account details
and how to construct these variables at run time using dynamic initialization.

154 @ Object-Oriented Programming with C++

DYNAMIC INITIALIZATION OF CONSTRUCTORS

// Long-term fixed deposit system
#include <iostream>
using namespace std;
class Fixed_deposit

{
Tong int P_amount; // Principal amount
int Years; // Period of investment
float Rate; // Interest rate
float R_value; // Return value of amount
public:
Fixed_deposit(){ }
Fixed_deposit(long int p, int y, float r=0.12);
Fixed_deposit(long int p, int y, int r);
void display(void);
}s
Fixed_deposit :: Fixed_deposit(long int p, int y, float r)
{ V
P_amount = p;
Years = y;
Rate: = r;
R_value = P_amount;
for{int i = 1; i <= y; j++)
R_value = R_value * (1.0 + r);
}
Fixed_deposit :: Fixed_deposit(long int p, int y, int r)
{
P_amount = p;
Years = y;
Rate = r;
R_value = P_amount;
for(int i=1; i<=y; i++)
R_value = R_value*(1.0+float(r)/100);
} ,
void Fixed_deposit :: display(void)
{
cout << "\n"
<< "Principal Amount = " << P_amount << "\n"
<< "Return Value = " << R value << "\n";
}

(Contd)

Constructors and Destructors @155

int main()
{
Fixed deposit FD1, FD2, FD3; // deposits created
long int p; // principal amount
int ' // investment period, years
float r; // interest rate, decimal form
int R; // interest rate, percent form

cout << "Enter amount,period,interest rate(in percent)“<<"\n";
¢in >> p >> y >> R;
FD1 = Fixed deposit(p,y,R);

cout << "Enter amount,period,interest rate(decimal form)" << "\n";
cin >> p >> y >> r;
FD2 = Fixed _deposit(p,y,r);

cout << "Enter amount and period" << "\n";
cin >> p>>y;
FD3 = Fixed deposit(p,y);

cout << "\nDeposit 1";
FD1.display();

cout << "\nDeposit 2";
FD2.display();

cout << "\nDeposit 3";
FD3.display();

return 0; ¢

PROGRAM 6.3

The output of Program 6.3 would be:

Enter amount,period,interest rate(in percent)

10000 3 18

Enter amount,period,interest rate(in decimal form)
10000 3 0.18

Enter amount and period

10000 3

Deposit 1

Principal Amount = 10000

Return Value = 16430.3

156 @ Object-Oriented Programming with C++

Deposit 2

Principal Amount = 10000
Return Value = 16430.3
Deposit 3

Principal Amount = 10000
Return Value = 14049.3

The program uses three overloaded constructors. The parameter values to these
constructors are provided at run time. The user can provide input in one of the following
forms:

1. Amount, period and interest in decimal form.
2. Amount, period and interest in percent form. -
3. Amount and period.

note

Since the constructors are overloaded with the appropriate parameters, the one that
matches the input values is invoked. For example, the second constructor is invoked for
the forms (1) and (3), and the third is invoked for the form (2). Note that, for form (3). the
constructor with default argument is used. Since input to the third parameter is missing,
it uses the default value for r.

|6.7 Copy Constructor

We briefly mentioned about the copy constructor in Sec. 6.3. We used the copy constructor
integer(integer &i);

in Sec. 6.4 as one of the overloaded constructors.

As stated earlier, a copy constructor is used to declare and initialize an object from another
object. For example, the statement

integer 12(I1);

would define the object 12 and at the same time initialize it to the values of I1. Another form
of this statement is

integer 12 = I1;

The process of initializing through a copy constructor is known as copy initialization.
Remember, the statement

12 = 11;

Constructors and Destructors -0 157

will not invoke the copy constructor. However, if I1 and I2 are objects, this statement is
legal and simply assigns the values of I1 to I2, member-by-member. This is the task of the
overloaded assignment operator(=). We shall see more about this later.

A copy constructor takes a reference to an object of the same class as itself as an argument.
Let us consider a simple example of constructing and using a copy constructor as shown in
Program 6.4.

#include <iostream>

using namespace std;

class code
{
int id;
public:
code(){ } // constructor
code(int a) { id = a;} // constructor again
code(code & x) // copy constructor

{

id = x.id; // copy in the value
| ;
void display(void)

{

cout << id;

}
}s
int main()

{
code A(100); // object A is created and initialized
code B(A); // copy constructor called
code C = A; // copy constructor called again

code D; // D is created, not initialized
D = A; // copy constructor not called

cout << “"\n id of A: "; A.display();
cout << "\n id of B: "; B.display();
cout << "\n id of C: "; C.display();
cout << "\n id of D: "; D.display();

return 0;

PROGRAM 6.4

158 & Object-Oriented Programming with C++

The output of Program 6.4 is shown below

id of A: 100
id of B: 100
id of C: 100
id of D: 100

rnole

A reference variable has been used as an argument to the copy constructor. We cannot

pass the argument by value to a copy constructor.

When no copy constructor is defined, the compiler supplies its own copy constructor.

|6.8 Dynamic Constructors

The constructors can also be used to allocate memory while creating objects. This will enable
the system to allocate the right amount of memory for each object when the objects are not
of the same size, thus resulting in the saving of memory. Allocation of memory to objects at
the time of their construction is known as dynamic construction of objects. The memory is
allocated with the help of the new operator. Program 6.5 shows the use of new, in constructors

that are used to construct strings in objects.

| CONSTRUCTORS: WITE

#include <iostream>
#include <string>

using namespace std;

class String
{
char *name;
int Tlength;
public:
String() // constructor-1
{
length = 0;
name = new char[length + 1];

}

String(char *s) // constructor-2

{
length = strlen(s);

(Contd)

Constructors and Destructors @159

name = new char[length + 11; // one additional
// character for \0
strcpy(name, s);

}

void display(void)

{COut << name << "\n";}

void join(String &a, String 8&b);
bs

void String :: join(String &a, String &b)
{ .
Tength = a.length + b.length;
delete name;
name = new char{length+1]; // dynamic allocation

strcpy(name, a.name);
strcat(name, b.name);

}s

int main()
{
char *first = "Joseph ";
String namel(first), name2("Louis "),name3("Lagrange"),sl,s2;

sl.join(namel, name2);
s2.join(sl, name3);
namel.display():
name2.display();
name3.display();
sl.dispiay();
s2.display();

return 0,

PROGRAM 6.5

The output of Program 6.5 would be:

Joseph

Louis

Lagrange

Joseph Louis

Joseph Louis Lagrange

160e@ Object-Oriented Programming with C++

rnote

This Program uses two constructors. The first is an empty constructor that allows us to
declare an array of strings. The second constructor initializes the length of the string,
allocates necessary space for the string to be stored and creates the string itself. Note
that one additional character space is allocated to hold the end-of-string character "\ 0".

The member function join() concatenates two strings. It estimates the combined length
of the strings to be joined, allocates memory for the combined string and then creates the
same using the string functions strepy() and streat(). Note that in the function join(),
length and name are members of the object that calls the function, while a.length and
a.name are members of the argument object a. The main() function program concatenates
three strings into one string. The output is as shown below:

Joseph Louis Lagrange

I6.9 Constructing Two-dimensional Arrays

We can construct matrix variables using the class type objects. The example in Program 6.6
illustrates how to construct a matrix of size m x n.

#include <iostream>

using namespace std;

class matrix

{
int **p; // pointer to matrix
int dl,d2; // dimensions
public:

matrix(int x, int y);
void get element(int i, int j, int value)
{p[i1[31=value;}
int & put_element(int i, int j)
{return p[i]1[J1;}
b
matrix :: matrix(int x, int y)

{

dl =

d2 =

p = new int *[dl], // creates an array pointer
for(int i = 0; i < dl; i++)

(Contd)

Constructors and Destructors ® 161

plil = new int[d2]; // creates space for each row

}

int main()

{

int m, n;

cout << "Enter size of matrix: ";
cin. >>m >>n;
matrix A{m,n); // matrix object A constructed

cout << "Enter matrix elements row by row \n";
int i, j, value; o

for(i =.0; i <m; i++)
for(j = 0; § < n; j++)
{
cin >> value;
A.get_element(i,j,value);
}
cout << "\n";
cout << A.put_element(1,2);

return 0;

}s

PROGRAM 6.6

The output of a sample run of Program 6.6 is as follows.

Enter size of matrix: 3 4
Enter matrix elements row by row

11 12 13 14
15 16 17 18 d2 columns
19 20 21 22
0 1 2 3 4 5
17 Pointer P [0] —
17 is the value of the Pointer P11
element (1,2). omnter P 1) d1 rows
The constructor first pginterp 2] s X
creates a vector pointer to an
int of size d1. Then, it .
allocates, iteratively an int Pointer P [3]

type vector of size d2 pointed
at by each element plil.
Thus, space for the elements of a d1 x d2 matrix is allocated from free store as shown above.

x represents the element P[2] [3]

162 60- Object-Oriented Programming with C++

|6. 10 const Objects

We may create and use constant objects using const keyword before object declaration. For
example, we may create X as a constant object of the class matrix as follows:

const matrix X(m,n); // object X is constant
Any attempt to modify the values of m and n will generate compile-time error. Further,
a constant object can call only const member functions. As we know, a const member is a
function prototype or function definition where the keyword const appears after the function's

signature.

Whenever const objects try to invoke non-const member functions, the compiler generates
errors.

|6. 11 Destructors

A destructor, as the name implies, is used to destroy the objects that have been created by
a constructor. Like a constructor, the destructor is a member function whose name is the
same as the class name but is preceded by a tilde. For example, the destructor for the class
integer can be defined as shown below:

~integer(){ }

A destructor never takes any argument nor does it return any value. It will be invoked
implicitly by the compiler upon exit from the program (or block or function as the case may
be) to clean up storage that is no longer accessible. It is a good practice to declare destructors
in a program since it releases memory space for future use.

Whenever new is used to allocate memory in the constructors, we should use delete to
free that memory. For example, the destructor for the matrix class discussed above may be
defined as follows:

matrix :: ~matrix()

{
for(int 1=0; i<dl; i++)
delete p[i];
delete p;

}

This is required because when the pointers to objects go out of scope, a destructor is not
called implicitly.

Constructors and Destructors 9163

The example below illustrates that the destructor has been invoked implicitly by the
compiler.

#include <iostream>
using namespace std;
int count = 0;

class alpha

{
public:
alpha()
{
count++;
cout << "\nNo.of object created " << count;
}
~alpha()
{
cout << "\nNo.of object destroyed " << count;
count--;
}
}s
int main()
{
cout << "\n\nENTER MAIN\n";
alpha Al, A2, A3, A4;
{
cout << "\n\nENTER BLOCKI\n";
alpha A5;
}
{ .
cout << "\n\nENTER BLOCK2\n";
alpha A6;
}
cout << "\n\nRE-ENTER MAIN\n";
return 0;
}

PROGRAM 6.7

164

Object-Oriented Programming with C++

The output of a sample run of Program 6.7 is shown below:

ENTER
No.of
No.of
No.of
No.of
ENTER

No.of
No.of

ENTER

No.of
No.of

RE-ENTER MAIN

MAIN

object
object
object
object

BLOCK1

object
object

BLOCK2

object
object

created 1
created 2
created 3
created 4

created 5
destroyed

created 5
destroyed

No.of object destroyed
No.of object destroyed
No.of object destroyed
No.of object destroyed

5

5

—_ N W

note

As the objects are created and destroyed, they increase and decrease the count. Notice
that after the first group of objects is created, A5 is created, and then destroyed, A6 is
created, and then destroyed. Finally, the rest of the objects are also destroyed. When the
closing brace of a scope is encountered, the destructors for each object in the scope are
called. Note that the objects are destroyed in the reverse order of creation.

H

SUMMARY

™~

/

& C++ provides a special member function called the constructor which enables an object
to initialize itself when it is created. This is known as automatic initialization of objects.

8488

A constructor has the same name as that of a class.
Constructors are normally used to initialize variables and to allocate memory.

Similar to normal functions, constructors may be overloaded.

Constructors and Destructors 0165

¢<> When an object is created and initialized at the same time, a copy constructor gets
called.

We may make an object const if it does not modify any of its data values.

g8

C++ also provides another member function called the destructor that destroys the
objects when they are no longer required.

Key Terms

» automatic initialization » explicit call

» Const » implicit call

» Constructor » implicit constructor
» constructor overloading » initialization

» copy constructor > new

» copy initialization » parameterized constructor
» default argument » reference

» default constructor » shorthand method
» Delete » strcat()

» Destructor » strepy(

» dynamic construction » strlen()

» dynamic initialization » virtual

IReview Questions

6.1 What is a constructor? Is it mandatory to use constructors in a class?
6.2 How do we invoke a constructor function?

6.3 List some of the special properties of the constructor functions.

6.4 What is a parameterized constructor?

6.5 Can we have more than one constructors in a class? If yes, explain the need for
such a situation.

6.6 What do you mean by dynamic initialization of objects? Why do we need to do
this?
6.7 How is dynamic initialization of objects achieved?
6.8 Distinguish between the following two statements:
time T2(T1);
time T2 = T1;

T1 and T2 are objects of time class.

166 @ Object-Oriented Programming with C++

6.9 Describe the importance of destructors.
6.10 State whether the following statements are TRUE or FALSE.

(a) Constructors, like other member functions, can be declared anywhere in
the class.

(b) Constructors do not return any values.

(c) A constructor that accepts no parameter is known as the default constructor.
(d) A class should have at least one constructor.

(e) Destructors never take any argument.

I Debugging Exercises

6.1 Identify the error in the following program.

#include <iostream.h>
class Room
{
int Tength;
int width;
pub]fc:
Room(int 1, int w=0):
width(w),
length(1)

bs
void main()

{

Room objRooml;
Room objRoom2 (12, 8);

6.2 Identify the error in the following program.

#include <iostream.h>
class Room
{

int length;

int width;
public:

6.3

Constructors and Destructors

Room()

{
Tength = 0;
width = 0;

1
Room(int value=8)
{
lTength = width = 8;
}

void display()

{
<
(

cout << length << ' ' << width;

by

void main()

|
1

Room ohjRooml;
objRooml.display();

Identify the error in the following program.

#include <iostream.h>
class Room

{
int width;

int height;
static int copyConsCount;
public:
void Room()
{
width = 12;
height = 8;

Room(Room& r)

{
width = r.width;
height = r.height;

®167

1680

6.4

Object-Oriented Programming with C++

copyConsCount++;

void dispCopyConsCount()
{

cout << copyConsCount;
H
int Room::copyConsCount = 0;

void main()

{
Room objRooml;
Room objRoom2(objRooml);
Room objRoom3 = objRooml;
Room objRoom4;
objRoom4 = objRoom3;

objRoom4.dispCopyConsCount();

Identify the error in the following program.

#include <iostream.h>

class Room
{
int width;
int height;
static int copyConsCount;

pubTlic:
Room()
{
width = 12;
height = 8;

Room(Room& r)

{

Constructors and Destructors 169

width = r.width;
height = r.height;
copyConsCount++;

void disCopyConsCount ()
{

cout << copyConsCount;
s
int Room::copyConsCount = 0;

void main()

{
Room objRooml;
Room objRoom2 (objRooml};
Room objRoom3 = objRooml;
Room objRoom4;
objRoom4 = objRoom3;

objRoom4.dispCopyConsCount();
}

I Programming Exercises

6.1

6.2

Design constructors for the classes designed in Programming Exercises 5.1 through
5.5 of Chapter 5.

Define a class String that could work as a user-defined string type. Include
constructors that will enable us to create an uninitialized string

String sl; // string with length O
and also to initialize an object with a string constant at the time of creation like
String s2("Well done!");

Include a function that adds two strings to make a third string. Note that the
statement

s2 = sl;
will be perfectly reasonable expression to copy one string to another.
Write a complete program to test your class to see that it does the following tasks:
(a) Creates uninitialized string objects.
(b) Creates objects with string constants.

170

6.3

6.4

6.5

Object-Oriented Programming with C++

(c) Concatenates two strings properly.

(d) Displays a desired string object.

A book shop maintains the inventory of books that are being sold at the shop. The
list includes details such as author, title, price, publisher and stock position.
Whenever a customer wants a book, the sales person inputs the title and author
and the system searches the list and displays whether it is available or not. If it is
not, an appropriate message is displayed. If it is, then the system displays the
book details and requests for the number of copies required. If the requested copies
are available, the total cost of the requested copies is displayed; otherwise the
message "Required copies not in stock" is displaved.

Design a system using a class called books with suitable member functions and
constructors. Use new operator in constructors to allocate memory space required.
Improve the system design in Exercise 6.3 to incorporate the following features:

(a) The price of the books should be updated as and when required. Use a private
member function to implement this.

(b) The stock value of each book should be automatically updated as soon as a
transaction is completed.

(¢) The number of successful and unsuccessful transactions should be recorded
for the purpose of statistical analysis. Use static data members to keep count
of transactions.

Modify the program of Exercise 6.4 to demonstrate the use of pointers to access the
members.

VYVYVYyVYVYYVYVYVYYVYY

Key Concepts

Overloading

Operator functions
Overloading unary operators
String manipulations

Basic to class type

Class to class type

Operator overloading
Overloading binary operators
Using friends for overloading
Type conversions

Class to basic type
Overloading rules

7.1 Introduction

Operator overloading is one of the many
exciting features of C++ language. It is an
important technique that has enhanced the
power of extensibility of C++. We have
stated more than once that C++ tries
to make the user-defined data types behave
in much the same way as the built-in types.
For instance, C++ permits us to add
two variables of user-defined types with the
same syntax that is applied to the
basic types. This means that C++ has the
ability to provide the operators with a
special meaning for a data type. The
mechanism of giving such special meanings
to an operator is known as operator
overloading.

Operator overloading provides a flexible
option for the creation of new definitions
for most of the C++ operators. We can

172® Object-Oriented Programming with C++

almost create a new language of our own by the creative use of the function and operator
overloading techniques. We can overload (give additional meaning to) all the C++ operators
except the following:

® C(Class member access operators (., .*).
® Scope resolution operator (::).

® Size operator (sizeof).

® Conditional operator (?:).

The excluded operators are very few when compared to the large number of operators
which qualify for the operator overloading definition.

Although the semantics of an operator can be extended, we cannot change its syntax, the
grammatical rules that govern its use such as the number of operands, precedence and
associativity. For example, the multiplication operator will enjoy higher precedence than
the addition operator. Remember, when an operator is overloaded, its original meaning is
not lost. For instance, the operator +, which has been overloaded to add two vectors, can still
be used to add two integers. '

|7.2 Defining Operator Overloading

To define an additional task to an operator, we must specify what it means in relation to the
class to which the operator is applied. This is done with the help of a special function, called
operator function, which describes the task. The general form of an operator function is:

return type classname :: operator op(arglist)

{
}

where return type is the type of value returned by the specified operation and op is the
operator being overloaded. The op is preceded by the keyword operator. operator op is
the function name.

Function body // task defined

Operator functions must be either member functions (non-static) or friend functions. A
basic difference between them is that a friend function will have only one argument for
unary operators and two for binary operators, while a member function has no arguments
for unary operators and only one for binary operators. This is because the object used to
invoke the member function is passed implicitly and therefore is available for the member
function. This is not the case with friend functions. Arguments may be passed either by
value or by reference. Operator functions are declared in the class using prototypes as
follows:

Operator Overloading and Type Conversions 173

vector operator+(vector); // vector addition
vector operator—(); // unary minus
friend vector operator+(vector,vector); // vector addition
friend vector operator—(vector); // unary minus
vector operator-(vector &a); // subtraction

int operator==(vector); // comparison
friend int operator==(vector,vector) // comparison

vector is a data type of class and may represent both magnitude and direction (as in
physics and engineering) or a series of points called elements (as in mathematics)

The process of overloading involves the following steps:
1. Create a class that defines the data type that is to be used in the overloading operaion.
2. Declare the operator function operator op() in the public part of the class.
It may be either a member function or a friend function.

3. Define the operator function to implement the required operations.

Overloaded operator functions can be invoked by expressions such as
op X or x op
for unary operators and

X opy

for binary operators. op x (or x op) would be interpreted as
operator op (x)

for friend functions. Similarly, the expression x op y would be interpreted as either
x.operator op (y)

in case of member functions, or
operator op (x,y)

in case of friend functions. When both the forms are declared, standard argument matching

is applied to resolve any ambiguity.

|7.5 Overloading Unary Operators

Let us consider the unary minus operator. A minus operator when used as a unary, takes
just one operand. We know that this operator changes the sign of an operand when applied
to a basic data item. We will see here how to overload this operator so that it can be applied

174 & Object-Oriented Programming with C++

to an object in much the same way as is applied to an int or float variable. The unary minus
when applied to an object should change the sign of each of its data items.

Program 7.1 shows how the unary minus operator is overloaded.

using namespace std;

class space

{
int x;
int y;
int z;

public:
void getdata(int a, int b, int ¢);
void display(void);

void operator-(); // overload unary minus
b
void space :: getdata(int a, int b, int c)
{
X = a;
y = b;
Z = c;
}
void space :: display(void)
{
cout << x << "M,
cout << y << " "
cout << z << "\n";
}
void space :: operator-()
{
X = -X;
Y = -ys
7= -2
}
int main()
{
space S;

S.getdata(10, -20, 30);

(Contds

Operator Querloading and Type Conversions 0175
cout << "S§ "y

S.display();

-S; // activates operator-() function

cout << "S ",
S.disptay();

return 0,

PROGRAM 7.1

The Program 7.1 produces the following output:

S ¢ 10 =20 30
S ¢ -10 20 -30

reote
The function operator — () takes no argument. Then, what does this operator function do?. It
changes the sign of data members of the object S. Since this function is a member function
Qf' the same class, it can directly access the members of the object which activated it.

Remember, a statement like
S2 = -S1;

\

will not work because, the function operator—() does not return any value. It can work if
the funetion is modified to return an object.

It is possible to overload a unary minus operator using a friend function as follows:

friend void operator-(space &s); // declaration
void cperator-(space &s) // definition
{
S.X = =S5.X;
S.Y = —=S.y;
5.2 = -S.Z;
}
rote

Note that the argument is passed by reference. It will not work if we pass argument
by value because only a copy of the object that activated the call is passed to operator-().
Therefore, the changes made inside the operator function will not reflect in the
called object.

176 @ Object-Oriented Programming with C++

'7.4 Overloading Binary Operators

We have just seen how to overload an unary operator. The same mechanism can be used to
overload a binary operator. In Chapter 6, we illustrated, how to add two complex numbers
using a friend function. A statement like

€ = sum(A, B); // functional notation.
was used. The functional notation can be replaced by a natural looking expression

C=A+B; // arithmetic notation

by overloading the + operator using an operator+() function. The Program?7.2 illustrates
how this is accomplished.

© OVERLOADING + OPERATOR

#include <iostream>
using namespace std;

class complex

{
float x; // real part
float y; // imaginary part
public:
complex{){ } // constructor 1
complex(float real, float imag) // constructor 2

{ x = real; y = imag; }
complex operator+(complex);
void display(void);

}s

complex complex :: operator+(complex c)

{

complex temp; // temporary
temp.x = X + C.X; // these are
temp.y =y + C.y; // float additions

return(temp);

}

void complex :: display(void)

{

cout << x << " + j" <<y << "\ﬂ“;
(Contd)

Operator Overloading and Type Conversions 0177

}

int main()
{
complex C1, €2, C3; // invokes constructor 1
€1 = complex(2.5, 3.5); // invokes constructor 2
€2 = complex(1.6, 2.7);
€3 =C1 +C2;
cout << "Cl1 = "; Cl.display();
cout << "C2 = "; C2.display();
cout << “€3 = "; C3.display();
return 0;

PROGRAM 7.2

The output of Program 7.2 would be:

(1 = 2.5+ j3.5
€2 =1.6 + j2.7
C3 =4.1 + jb.2

rote

Let us have a close look at the function operator+() and see how the operator overloading
is implemented.

complex complex :: operator+(complex c)
{

complex temp;

temp.x = X + C.X;

temp.y =y + C.y;

return(temp);

}

We should note the following features of this function:

1. It receives only one complex type argument explicitly.
2. It returns a complex type value.
3. It is a member function of complex.

The function is expected to add two complex values and return a complex value as the
result but receives only one value as argument. Where does the other value come from?
Now let us look at the statement that invokes this function:

€3 = C1 + C2; // invokes operator+() function

180@ Object-Oriented Programming with C++

where A and B are objects of the same class. This will work for a member function but the
statement

A=2+B; (orA=2%*B)

will not work. This is because the left-hand operand which is responsible for invoking the
member function should be an object of the same class. However friend function allows
both approaches. How?

It may be recalled that an object need not be used to invoke a friend function but can be
passed as an argument. Thus, we can use a friend function with a built-in type data as the
left-hand operand and an object as the right-hand operand. Program 7.3 illustrates this,
using scalar multiplication of a vector. It also shows how to overload the input and output
operators >> and <<.

- **OVERLOADING OPERATORS USING FRIENDS =~

#include <iostream.h>
const size = 3;

class vector

{
int v[size];

public:
vector(); // constructs null vector
vector{int *x); // constructs vector from array
friend vector operator *(int a, vector b); // friend 1
friend vector operator *(vector b, int a); // friend 2
friend istream & operator >> (istream &, vector &);
friend ostream & operator << (ostream &, vector &);

}s

vector :: vector()
{
for(int i=0; i<size; i++)
v[i] = 0;
}

vector :: vector(int *x)

{
for(int i=0; i<size; i++)

vlil = x[il;

(Contd)

Operator Overloading and Type Conversions

vector operator *(int a, vector b)

{

}

vector c;
for(int i=0; i < size; i++)
c.v[i]l = a * b.v[i];
return C;
vector operator *(vector b, int a)
vector c;
for(int i=0; i<size; i++)

c.v[i] = b.v[i]l * a;
return c;

istream & operator >> (istream &din, vector &b)

{

}

for(int i=0; i<size; i++)
din >> b.v[i];
return(din);

ostream & operator << (ostream &dout, vector &b)

{

}

dout << (" << b.v [0];
for(int i=1; i<size; i+t+)

dout << ", " << b.v[i];
dout << n)u;
return(dout);

int x[size] = {2,4,6};

int main()

{
vector m; // invokes constructor 1
vector n = x; // invokes constructor 2

cout << "Enter elements of vector m " << "\n";

cin >> m; // invokes operator>>() function

® 181

(Contd)

1826 Object-Oriented Programming with C++

cout << "\n";
cout << "m = " << m << "\n"; // invokes operator <<()

vector p, q;

p=2%*m // invokes friend I
g=n*2; // invokes friend 2
cout << "\n";
cout << "p = " << p << "\n"; // invokes operator<<()
cout << "g = " << g << "\n";
return 0;
}
PROGRAM 7.3

Shown below is the output of Program 7.3:

Enter elements of vector m

510 15

= (5, 10, 15)
p = (10, 20, 30)
q= (4, 8, 12)

The program overloads the operator * two times, thus overloading the operator function
operator™() itself. In both the cases, the functions are explicitly passed two arguments and
they are invoked like any other overloaded function, based on the types of its arguments.
This enables us to use both the forms of scalar multiplication such as

p=2%*m // equivalent to p = operator*(2,m);
qg=n*2; // equivalent to q = operator*(n,2);

The program and its output are largely self-explanatory. The first constructor
vector();

constructs a vector whose elements are all zero. Thus
vector m;

creates a vector m and initializes all its elements to 0. The second constructor
vector(int &x);

creates a vector and copies the elements pointed to by the pointer argument x into it.
Therefore, the statements

Operator Overloading and Type Conversions ¢ 183

int x[3] = {2, 4, 6};
vector n = X3

create n as a vector with components 2, 4, and 6.

Ve rode

We have used vector variables like m and n in input and output statements just like
simple variables. This has been made possible by overloading the operators >> and <<
using the functions:

friend istream & operator>>(istream &, vector &);
friend ostream & operator<<(ostream &, vector &);

istream and ostream are classes defined in the iostream.h file which has been included

Q] the program.)

i7.6 Manipulation of Strings Using Operators

ANSI (' implements strings using character arrays, pointers and string functions. There
arc no operators for manipulating the strings. One of the main drawbacks of string
manipulations in C is that whenever a string is to be copied, the programmer must first
determine its length and allocate the required amount of memory.

Although these limitations exist in C++ as well, it permits us to create our own definitions
of operators that can be used to manipulate the strings very much similar to the decimal
numbers. (Recently, ANSI C++ committee has added a new class called string to the C++
class library that supports all kinds of string manipulations. String manipulations using
the string class are discussed in Chapter 15.

For example, we shall be able to use statements like

string3 = stringl + string?2;
if(stringl >= string2) string = stringl;

Strings can be defined as class objects which can be then manipulated like the built-in
tvpes. Since the strings vary greatly in size, we use new to allocate memory for each string
and a pointer variable to point to the string array. Thus we must create string objects that
can hold these two pieces of information, namely, length and location which are necessary
for string manipulations. A typical string class will look as follows:

class string
{
char *p; // pointer to string

184 e Object-Oriented Programming with C++

int len; // length of string

..... // member functions
..... // to initialize and
..... // manipulate strings

We shall consider an example to illustrate the application of overloaded operators to
strings. The example shown in Program 7.4 overloads two operators, + and <= just to show
how they are implemented. This can be extended to cover other operators as well.

$L OPERATIONS ON STRINGS

#include <string.h>
#include <iostream.h>

class string

{

char *p;
int len;

public:
string() {len = 0; p = 0;} // create null string
string(const char * s); // create string from arrays
string(const string & s); // copy constructor
~ string(){delete p;} // destructor

// + operator
friend string operator+(const string &s, const string &t);

// <= operator
friend int operator<=(const string &s, const string &t);
friend void show(const string s);

}s

string :: string(const char *s)

len = strlen(s):
p = new char[len+1];
strepy(p,s);

string :: string(const string & s)

s.len;
new char[len+1];

H

len
p

f#

(Contd)

}

Operator Overloading and Type Conversions @185

strcpy(p,s.p);

// overloading + operator
string operator+(const string &s, const string &t)

{

}

string temp;

temp.len

= s.len + t.len;

temp.p = new char[temp.len+1];
strcpy(temp.p,s.p);
strcat(temp.p,t.p);
return(temp);

// overloading <= operator
int operator<=(const string &s, const string &t)

{

}

int m

int n

it

strien{s.p);
strlen(t.p);

if(m <= n) return(l);

else return(0);

void show(const string s)

{
}

cout << s.p;

int main()

{

string s1 = "New ";

string s2 = "York";
string s3 = "Delhi";
string t1,t2,t3;

tl =
t2 =
t3 =

cout
cout
cout
cout
cout

sl

s2;

s1+s3;

<< "\ntl = "; show(tl);
<< "\nt2 = "; show(t2);
<< "\n"j

<< "\nt3 = "; show(t3);
<< "\n\n";

(Contd)

186 & Object-Oriented Programming with C++

if(tl <= t3)
{
show(tl);
cout << " smaller than ";
show(t3):
cout << "\n";

else

show(t3);

cout << " smaller than ";
show(tl);

cout << "\n";

}

return 0;

PROGRAM 7.4

The following is the output of Program 7.4

tl = New
t2 = York
t3 = New Delhi

New smaller than New Delhi

|7.7 Rules for Overloading Operators

Although it looks simple to redefine the operators, there are certain restrictions and
limitations in overloading them. Some of them are listed below:

1.
2.

3.

o

Only existing operators can be overloaded. New operators cannot be created.

The overloaded operator must have at least one operand that is of user-defined
type.

We cannot change the basic meaning of an operator. That is to say, we cannot
redefine the plus(+) operator to subtract one value from the other.

Overloaded operators follow the syntax rules of the original operators. They cannot
be overridden.

There are some operators that cannot be overloaded. (See Table 7.1.)

We cannot use friend functions to overload certain operators. (See Table 7.2.) How-
ever, member functions can be used to overload them.

Operator Overloading and Type Conversions o187

7. Unary operators, overloaded by means of a member function, take no explicit argu-
ments and return no explicit values, but, those overloaded by means of a friend
function, take one reference argument (the object of the relevant class).

8. Binary operators overloaded through a member function take one explicit argu-
ment and those which are overloaded through a friend function take two explicit
arguments.

9. When using binary operators overloaded through a member function, the left hand
operand must be an object of the relevant class.

10. Binary arithmetic operators such as +, —, *, and / must explicitly return a value.
They must not attempt to change their own arguments.

Table 7.1 Operators that cannot be overloaded

Sizeof Size of operator
Membership operator
Pointer-to-member operator
Scope resolution operator
?: Conditional operator

#

Table 7.2 Where a friend cannot be used

Assignment operator

Function call operator
Subscripting operator

Class member access operator

—_ =
—_—

|
\%

|7.8 Type Conversions

We know that when constants and variables of different types are mixed in an expression,
C applies automatic type conversion to the operands as per certain rules. Similarly, an
assignment operation also causes the automatic type conversion. The type of data to the
right of an assignment operator is automatically cenverted to the type of the variable on the
left. For example, the statements

int m;
float x = 3.14159;

m= x;

convert x to an integer before its value is assigned to m. Thus, the fractional part is truncated.
The type conversions are automatic as long as the data types involved are built-in types.

What happens when they are user-defined data types?

188 0- Object-Oriented Programming with C++

Consider the following statement that adds two objects and then assigns the result to a
third object.

v3 = vl + v2; // vl, v2 and v3 are class type objects

When the objects are of the same class type, the operations of addition and assignment
are carried out smoothly and the compiler does not make any complaints. We have seen, in
the case of class objects, that the values of all the data members of the right-hand object are
simply copied into the corresponding members of the object on the left-hand. What if one of
the operands is an object and the other is a built-in type variable? Or, what if they belong to
two different classes?

Since the user-defined data types are designed by us to suit our requirements, the compiler
does not support automatic type conversions for such data types. We must, therefore, design
the conversion routines by ourselves, if such operations are required.

Three types of situations might arise in the data conversion between uncompatible types:

1. Conversion from basic type to class type.
2. Conversion from class type to basic type.
3. Conversion from one class type to another class type.

We shall discuss all the three cases in detail.

Basic to Class Type

The conversion from basic type to class type is easy to accomplish. It may be recalled that
the use of constructors was illustrated in a number of examples to initialize objects. For
example, a constructor was used to build a vector object from an int type array. Similarly,
we used another constructor to build a string type object from a char* type variable. These
are all examples where constructors perform a defacto type conversion from the argument’s
type to the constructor’s class type.

Consider the following constructor:

string :: string(char *a)

{
length = strlen(a);
P = new char[length+1];
strcpy(P,a);

1

This constructor builds a string type object from a char* type variable a. The variables
length and p are data members of the class string. Once this constructor has been defined

Operator Overloading and Type Conversions ¢ 189

in the string class, it can be used for conversion from char* type to string type. Example:

string sl, s2;
char* namel = "IBM PC";

char* name2 = "Apple Computers”;
sl = string(namel);
s2 = nameZ;

The statement
sl = string(namel);

first converts namel from char* type to string type and then assigns the string type
values to the object s1. The statement

s2 = nameZ;
also does the same job by invoking the constructor implicitly.

Let us consider another example of converting an int type to a class type.

class time
{
int hrs;
int mins;
public:
time(int t) // constructor
{
hours = t/60; // t in minutes
mins = t%60;

b

The following conversion statements can be used in a function:

time T1; // object Tl created
int duration = 85;
Tl = duration; // int to class type

After this conversion, the hrs member of T1 will contain a value of 1 and mins member
a value of 25, denoting 1 hours and 25 minutes.

190@ Object-Oriented Programming with C++ -

reode

The constructors used for the type conversion take a single argument whose type is to be
converted.

N

In both the examples, the left-hand operand of = operator is always a class object.
Therefore, we can also accomplish this conversion using an overloaded = operator.

Class to Basic Type

The constructors did a fine job in type conversion from a basic to class type. What about the
conversion from a class to basic type? The constructor functions do not support this operation.
Luckily, C++ allows us to define an overloaded casting operator that could be used to convert
a class type data to a basic type. The general form of an overloaded casting operator function,
usually referred to as a conversion function, is:

operator typename()
{

..... (Function statements)
}

This function converts a class type data to typename. For example, the operator double()
converts a class object to type double, the operator int() converts a class type object to
type int, and so on.

Consider the following conversion function:

vector :: operator double()
{
double sum = 0;
for(int i=0; i<size; i++)
sum = sum + v[i] * v[i];
return sqrt{sum);

}

This function converts a vector to the corresponding scalar magnitude. Recall that the
magnitude of a vector is given by the square root of the sum of the squares of its components.
The operator double() can be used as follows:

double Tength
or
double Tlength = V1

i

double(V1);

Operator Overloading and Type Conversions -0 191

where V1 is an object of type vector. Both the statements have exactly the same effect.
When the compiler encounters a statement that requires the conversion of a class type to a
basic type, it quietly calls the casting operator function to do the job.

The casting operator function should satisty the following conditions:

=]t must be a class member.
It must not specify a return type.
» [t must not have any arguments.

Since it is a member function, it is invoked by the object and, therefore, the values used
for conversion inside the function belong to the object that invoked the function. This means
that the function does not need an argument.

In the string example described in the previous section, we can do the conversion from
string to char* as follows:

string :: operator char*()

{
return(p);
!

1

One Class to Another Class Type

We have just seen data conversion techniques from a basic to class type and a class to basic
type. But there are situations where we would like to convert one class type data to another
class type.

Example:

objX = objY; // objects of different types

objX is an object of class X and objY is an object of class Y. The class Y type data is
converted to the class X type data and the converted value is assigned to the objX. Since
the conversion takes place from class Y to class X, Y is known as the source class and X is
known as the destination class.

Such conversions between objects of different classes can be carried out by either a
constructor or a conversion function. The compiler treats them the same way. Then, how do
we decide which form to use? It depends upon where we want the type-conversion function
to be located in the source class or in the destination class.

We know that the casting operator function

operator typename()

192 @ Object-Oriented Programming with C++

converts the class object of which it is @ member to typename. The typename may be a built-
in type or a user-defined one (another class type). In the case of conversions between objects,
typename refers to the destination class. Therefore, when a class needs to be converted, a
casting operator function can be used (i.e. source class). The conversion takes place in the
source class and the result is given to the destination class object.

Now consider a single-argument constructor function which serves as an instruction for
converting the argument's type to the class type of which it is a member. This implies that
the argument belongs to the source class and is passed to the destination class for conversion.
This makes it necessary that the conversion constructor be placed in the destination class.
Figure 7.2 illustrates these two approaches.

> objx = objy Il Y is a source class

Class Y
casting operator
converted value of function |
type X Conversion here
(source class)

Class X Class Y
Constructor data access !
function argument of functions i
Conversion here type Y

(destination class)

Fig. 7.2 <« Conversion between object

Table 7.3 provides a summary of all the three conversions. It shows that the conversion
from a class to any other type (or any other class) should make use of a casting operator in
the source class. On the other hand, to perform the conversion from any other type/class to
a class type, a constructor should be used in the destination class.

Table 7.3 Type conversions

Conversion required Conversion takes place in
Source class Destination class
Basic = class Not applicable Constructor
Class = basic Casting operator Not applicable
Class > class Casting operator Constructor)

A e P A T T e 0

When a conversion using a constructor is performed in the destination class, we must be
able to access the data members of the object sent (by the source class) as an argument.
Since data members of the source class are private, we must use special access functions in
the source class to facilitate its data flow to the destination class.

Operator Overloading and Type Conversions ©193

A Data Conversion Example

Let us consider an example of an inventory of products in store. One way of recording the
details of the products is to record their code number, total items in the stock and the cost of
each item. Another approach is to just specify the item code and the value of the item in the
stock. The example shown in Program 7.5 uses two classes and shows how to convert data of
one type to another.

#include <iostream>

using namespace std;

class invent2 // destination class declared
class inventl // source class
{
int code; // item code
int items; // no. of items
float price; // cost of each item
public:
inventi(int a, int b, float c)
{
code = a;
items = b;
price = ¢;
}
void putdata()
{
cout << "Code: " << code << "\n";
cout << "Items: " << items << "\n";
cout << "Value: " << price << "\n";

}

int getcode() {return code;}

int getitems() {return items;}

float getprice() ({return price;}

operator float() {return(items * price);}

/* operator invent2() // inventl to invent2
{

invent2 temp;

temp.code = code;

temp.value = price * items;

return temp;
b/

}s // End of source class
(Contd)

194 @ Object-Oriented Programming with C++

class invent2 // destination class
{
int code;
float value;.
public:
invent2()
{
code = 0; value = 0;
}
invent2(int x, float y) // constructor for
‘ // initialization
{
code = x;
value = y;
void putdata()
{
cout << "Code: " << code << "\n";
cout << "Value: " << value << "\n\n";
}
invent2(inventl p) // constructor for conversion
{
code = p.getcode();
value =p.getitems() * p.getprice();
} .
s // End of destination class
int main()

{
inventl s1(100,5,140.0);
invent2 dl;
float total value;

/* inventl To float */
total _value = sl;

/* inventl To invent2 */
dl = sl;

cout << "Product details - inventl type" << "\n";
sl.putdata();

cout << "\nStock value" << "\n";

cout << "Value = " << total_value << "\n\n";

. cout << "Product details-invent2 type" << "\n";
dl.putdata(); '
return 0;

PROGRAM 7.5

Operator Overloading and Type Conversions 9195

Following is the output of Program 7.5:

Product details-inventl type

Code: 100

Items: 5

Value: 140

Stock value

Value = 700

Product details-invent2 type
Code: 100

Value: 700

/ rnole ~N

We have used the conversion function
operator float()
in the class inventl to convert the inventl type data to a float. The constructor

invent2 (inventl)

is used in the class invent2 to convert the inventl type data to the invent2 type data.
Remember that we can also use the casting operator function
operator invent2()

in the class inventl to convert inventl type to invent2 type. However, it is important

that we do not use both the constructor and the casting operator for the same type

conversion, since this introduces an ambiguity as to how the conversion should be
erformed.

\> Y,

i
o,
ey

&> Operator overloading is one of the important features of C++ language. It is called
compile time polymorphism.

<> Using overloading feature we can add two user defined data types such as objects, with
the same syntax, just as basic data types.

<> We can overload almost all the C++ operators except the following:
¢ class member access operators(., .*)
e scope resolution operator (:;)

196 € Object-Oriented Programming with C++

e size operator(sizeof)
e conditional operator(?:)

<> Operator overloading 1s done with the help of a special function, called operator function,
which describes the special task to an operator.

<> There are certain restrictions and limitations in overloading operators. Operator
functions must either be member functions (non-static) or friend functions. The
overloading operator must have at least one operand that is of user-defined type.

&> The compiler does not support automatic type conversions for the user defined data
types. We can use casting operator functions to achieve this.

& The casting operator function should satisfy the following conditions:
o It must be a class member.
¢ It must not specify a return type.
¢ It must not have any arguments.
Key Terms
> arithmetic notation » operator
» binary operators » operator function
> casting » operator overloading
> casting operator » scalar multiplication
> constructor » semantics
» conversion function > sizeof
» destination class » source class
» friend » syntax
» friend function » temporary object
» functional notation » type conversion
» manipulating strings » unary operators

i Review Questions

7.1 What ts operator overloading?

7.2 Why is it necessary to overload an operator?

7.3 What is an operator function? Describe the syntax of an operator function.

7.4 How many arguments are required in the definiiion of an overloaded unary

operator?

Operator Overloading and Type Conversions 0197

75 A class alpha has a constructor as follows:
alphafint a, double b);
Can we use this constructor to convert types?

76 What 1s a conversion function How is it created Explain its syntax.

7.7 A friend function cannot be used to overload the assignment operator =. Explain
why?

7.8 When is a friend function compulsory? Give an example.

79 We have two classes X and Y. If a is an object of X and b is an object of Y and we
want to say a = b; What type of conversion routine should be used and where?
710 State whether the following statements are TRUE or FALSE.
{a) Using the operator overloading concept, we can change the meaning of an
operator.
(b) Operator overloading works when applied to class objects only.
(¢) Friend functions cannot be used to overload operators.
(d) When using an overloaded binary operator, the left operand is implicitly
passed to the member function.
(e) The overloaded operator must have at least one operand that is user-defined
tvpe.
(f) Operator functions never return a value.
tg) Through operator overloading, a class type data can be converted to a basic
type data.
(hy A constructor can be used to convert a basic type to a class type data.

iDebugging Exercises

7.1 Identify the error in the following program.

#include <iostream.h>
class Space

{

int mCount;
public:

Space()

{

mCount = 0;

Space operator ++()

{

mCount++;

198 @ Object-Oriented Programming with C++

return Space(mCount);
s

void main()

{
Space objSpace;
objSpace++;

}

7.2 Identify the error in the following program.

#include <iostream.h>

enum WeekDays

{
mSunday,
mMonday,
mTuesday,
mWednesday,
mThursday,
mFriday,
mSaturday

bool op==(WeekDays& wl, WeekDays& w2)

if(wl== mSunday && w2 == mSunday)

return 1;

else if(wl== mSunday &% w2 == mSunday)
return 1;

else if(wl== mSunday && w2 == mSunday)
return 1;

else if(wl== mSunday && w2 == mSunday)
return 1;

else if(wl== mSunday && w2 == mSunday)
return 1;

else if(wl== mSunday && w2 == mSunday)
return 1;

else if(wl== mSunday && w2 == mSunday)
return 1;

return 0;

7.3

Operator Ouverloading and Type Conversions

§
void main()
{
WeekDays wl = mSunday, w2 = mSunday;
if(wl==w2)
cout << "Same day";
else
cout << "Different day";
}

Identify the error in the following program.

#include <iostream.h>
class Room
{
float mWidth;
float mLength;
pubiic:
Room()
§

Room(float w, float h)

:mWidth(w), mLength(h)
|

I

}

operator float()

{
return (float)mWidth * mlLength;

float getWidth()

{
}

float getlLength()

{

return mlLength;
1

void main()

-0 199

2000— Object-Oriented Programming with C++

{
Room objRooml(2.5, 2.5);
float fTotalArea;
fTotalArea = objRooml;
cout << fTotalArea;

}

I Programming Exercises

NOTE: For all the exercises that follow, build a demonstration program to test vour
code.

Create a cluss FLOAT that contains one
float data member. Overload all the four Point (r, a)

arithmetic operators so that theyv operate Radius ST
on the objects of FLOAT. - o
Design a class Polar which describes a
point in the plane using polar coordinates |
radius and angle. A point in polar !
coordinates is shown in Fig. 7.3.

=1
—

=1
8]

Use the overloaded + operator to add two Angle = a
objects of Polar. !

L s S

Note that we cannot add polar values of
two points directly. This requires first the
conversion of points into rectangular co-
ordinates, then adding the corresponding
rectangular co-ordinates and finally
converting the result back into polar co-ordinates. You need to use the following
trigonometric formulae:

Fig. 7.3 < Polar coordinates of a point |

E—

X = r * cos{a);

y = r * sin(a);

a = atan(y/x); // arc tangent

ro=osgrt(x*x + y*y);
7.3 Create a cluss MAT of size m x n. Define all possible matrix operations for MAT

type objects. :

7.4 Define a class String. Use overloaded == operator to compare two strings.
Define twwo classes Polar and Rectangle to represent points in the polar and
rectangle systems. Use conversion routines to convert from one system to the other.

~1
It

